4. Environmental Monitoring

4.1 Proposed Environmental Monitoring

The following monitoring is proposed taking into consideration site specific details and waste licences granted for similar type waste facilities. Locations of monitoring points and frequency of monitoring are provided.

4.2 Proposed Monitoring Locations

Media	Location	Monitoring Frequency
Dust Deposition	D1 (\$4715 1773)	Three times a year Note 1
	D2 (\$4711 1791)	Three times a year Note 1
Noise	N1 (S4715 1773)	Annually
	N2 (S4711 1791)	Annually
Biofilter	Biofilter (S4724 1787)	See Section 4.2.1
Surface Water Discharge	EW2 (S4751 1836)	See Section 4.2.2
Meteorological Monitoring	Onsite (S4715 1773)	See Section 4.2.3
Treated Effluent	EW1 (S4751 1836)	See Sections 4.2.2 & 4.4 of EIS
Compost quality monitoring	Final Compost	Monthly - See Section 4.3 of EIS

Note 1 Twice during the period May to September.

Monitoring locations are shown on Figure 4.1.				
4.2.1 Biofilter Monitoring Note 1	OTHY STRY			
Parameter	Monitoring Frequency	Analysis - Method/Technique		
Bed Media	AUT POLITIC			
Odour assessment Note 2	Daily off te	Subjective Inspection		
Condition and depth of biofilter Note 3	Daily ectivite	Visual Inspection		
Moisture content	Bi-annual W	Standard laboratory method		
pH	Bi-annually	pH probe		
Ammonia	Bi-annually	Standard laboratory method		
Total viable counts	Bi-annually	Standard laboratory method		
Inlet and Outlet Gas	150			
Ammonia	Bi-annually	Colourimetric Indicator Tubes		
Hydrogen sulphide	Bi-annually	Colourimetric Indicator Tubes		
Mercaptans	Bi-annually	Colourimetric Indicator Tubes		

Note 1: A competent laboratory using standard and internationally acceptable techniques shall carry out the analyses.

Note 2: This subjective assessment to be carried out by a staff member immediately upon arriving on-site Note 3: The biofilter shall be examined to ensure that no channelling is evident, and that moisture content is adequate.

4.2.2 Surface Water Discharge Monitoring

Monitoring control of the surface water discharges is similar to that specified in IPC licence No. 238.

AES Ireland Ltd

Page 1 of 3

Parameter	Monitoring Frequency Note 1	Analysis Method/Technique	
Flow	Continuous	On-line flow meter with recorder	
Temperature	Continuous On-line temperature probe w recorder		
рН	Continuous	pH electrode/meter and recorder	
Chemical Oxygen Demand	Daily	Standard Method	
Biochemical Oxygen Demand	Daily	Standard Method	
Suspended Solids	Daily	Standard Method	
Sulphides (as S)	Daily	Standard Method	
Ammonia (as N)	Daily	Ion selective electrode	
Total Nitrogen (as N)	Weekly	Standard Method	
Total Nitrogen (Kjeldahl)	Weekly	Standard Method	
Total Phosphorus (as P)	Weekly	Standard Method	
Ortho-Phosphate (as P)	Weekly	Standard Method	
Oils, fats & greases	Weekly	Standard Method	
Chloride	Weekly	Standard Method	
Phenols	Weekly	Standard Method	
Toxicity ^{Note 2}	Annually (24 hour flow	To be agreed with the Agency	
L			

Emission Point Reference No.: EW - 1 (Discharge of treated effluent)

Note 1: Upon receipt of test results, the frequency of monitoring shall be reviewed by the Agency.

The number of toxic units (Tu) = 100/x hour EC/LC50 in percentage vol/vot to that higher Tu values reflect greater levels Note 2: of toxicity. For test regimes where species death is not easily detected, immobilisation is considered equivalent to death. forat on

Emission Point Reference No.: EW - 2 (from surface water sump)

Visual Inspection	Weekly out du	Visual inspection	
pH	Continuous itor of	On-line pH meter Note 1	
Conductivity	Continuous	On-line Conductivity meter Note 2	
BOD	Annually	Standard Method	
Total Suspended Solids	Annually	Standard Method	

Note 1: Diversion of surface water shall occur if pH deviates outside pH 6-9 range

Note 2: Diversion of surface water shall occur if conductivity exceeds 2,000 \[]S/cm.

4.2.3 Meteorological Monitoring

The following data is to be obtained from weather station.

Parameter	Monitoring Frequency
Precipitation Volume	Monthly
Wind Force and Direction	Daily

4.3 Compost quality monitoring

Compost quality shall be monitored for the parameters listed below. The trace element concentration limits shall apply to the compost quality. It is envisaged that the frequency of monitoring of compost quality will be monthly.

Parameter (mg/kg, dry mass)	Compost Quality Standards Note 1		Stabilised
	Class 1	Class 2	Biowaste Note 1
Cadmium (Cd)	0.7	1.5	5
Chromium (Cr)	100	150	600
Copper (Cu)	100	150	600
Mercury (Hg)	0.5	1	5
Nickel (Ni)	50	75	150
Lead (Pb)	100	150	500

AES Ireland Ltd

Page 2 of 3

Zinc (Zn)	200	400	1500
PolyChlorintated Biphenyls (PCB's)	-	•	0.4
Polycyclic Aromatic Hydrocarbons	-	-	3
(PAH's)			
Impurities >2mm Note 5	<0.5%	<0.5%	<3%
Gravel and Stones >5mm Note 5	<5%	<5%	-

Note 1: Normalised to 30% organic matter content.

4.4 Wastewater Treatment Plant Monitoring Effluent Treatment Control

Item	Parameter	Monitoring Frequency	Analysis Method /Technique
Balancing Tank	pH		
Aeration Tanks	Dissolved Aeration	Continuous	DO probe
	Sludge Volume Index	Weekly	Standard Methods
	Mixed Liquor	Twice Weekly	Standard Methods
	Suspended Solids		
	Sludge Floc Microscopy	Daily	Standard Methods

Consent of inspection purposes only any other use.

AES Ireland Ltd

Page 3 of 3

Conserved constrained to any other use.

Placeholder

This page has been inserted to indicate that content has been extracted from this location in the document and has been stored in a separate file. (This is due to file size issues.)

The extracted content can be found in the following electronic pdf file:

Consent of constrain on prinoses only, any other use.