APPENDIX D

л, ^с

а_р. 9.

EPA Export 25-07-2013:13:50:10

Water Balance

The water balance at the site was used to estimate a reasonable infiltration parameter.

The hydraulic gradient measured at the site is generated by infiltration over the flow line from the nearest up gradient surface water divide a distance L_u away plus the site length L_s .

The actual flow at the site is

$$Q_s = K.i.A$$

Where Q_s (m³/d) is the flow under the site, K (m/s) is the hydraulic conductivity of the aquifer, I is the hydraulic gradient at the site (unitless) and A (m^2) is the cross sectional area of the aquifer beneath the site calculated from the aquifer depth multiplied by the site width.

Therefore recharge (m/d), at the site is likely to be

$$\operatorname{Re} ch \operatorname{arg} e = \left(\underbrace{L_s}_{l_u} + L_s \right) \times Q_s$$

and infiltration at the site, Inf(m/d) is

$$Inf = \frac{\operatorname{Re} ch \operatorname{arg} e}{A'}$$

where A' is the site area. This method was applied to Areas 1 and 4, the parameters used and the resulting estimates of infiltration are given in the table below. Area 6 was not included in the analysis as the position of the up-gradient surface water divide was not clear.

્રે

Parameter	Area	Area 4	
$L_u(\mathbf{m})$	650	200	
$L_s(\mathbf{m})$	130	60	
$Q_s (m^3/d)$	22.2	20	
<i>K</i> (m/d)	0.864	0.864	
Ι	0.0125	0.0133	
$A(m^2)$	2052	1736	
Recharge (m ³ /d)	7.2	1.8	
Infiltration (m/d)	0.00029	0.00038	

Based on the estimates above it was considered that a reasonable estimate for infiltration would be 0.0003 m/d.

This compares favourably with an estimate of infiltration based on 10% of the total precipitation (0.0026 m/d) reported by White Young Green (2002). This is considered to be conservative, as 10% of total precipitation is considered likely to infiltrate in sandy soils. (Conner et al, 1996), whereas the made ground in the vicinity of Areas 1, 4 and 6 is described as silty fill.