Noeleen Keavev

SII	hie	rt.	

FW: Clashford Facility - Reg. No W0265-01

Attachments:

JSPE 173_L25.pdf; JSPE 173_L27_15_11_17.pdf; P1317-1_0020_Clashford RF Water

SamplingReport_20171023.pdf; JSPE_173_L23.pdf

Importance:

High

From: James McCaldin [mailto:james.mccaldin@meathcoco.ie]

Sent: 22 November 2017 14:11

To: Brian Meaney < B. Meaney@epa.ie>; Ewa Babiarczyk < E. Babiarczyk@epa.ie>

Cc: Caroline Corrigan <caroline.corrigan@meathcoco.ie>; Larry Whelan <larry.whelan@meathcoco.ie>

Subject: Clashford Facility - Reg.# WO265-01

Brian, Ewa,

I intend to address your letter of 1st November 2017 by this email. I have sought guidance from MCC Planning in relation to question 1.

The answers for question 1.

- The Clashford Facility is planning compliant by way of its compliance with the restoration condition of its quarry registration under QY36.
- This restoration condition does not permit the processing of C&D Waste.
- The attachment 'JSPE 173' is the compliance submission agreed with the Planning Authority which the letter of copyright. dated on the 16/10 refers.

The answer for question 2.

For ease of understanding, we requested from the PH consultant (for illustration purposes) that a drawing be submitted clearly outlining the land for each Waste Facility Permit issued. Attached is 'JSPE 173 15 11 17.' We believe this drawing to be accurate. At this time, I am uncertain about the file WMP 2005/1.

The answer for question 3.

With reference to Section 55 notice issued, I attach Water Sampling Report for the recently installed well GW5 'P1317-1_0020' which does not highlight pollution. I also attach conformation of steps to access attenuation pond 'JSPE 173 L23'

We hope you find this information satisfactory and that it aids your decision making process. We would welcome a conclusion to this waste license application process as it has taken some considerable time.

Regards,

James.

Email Disclaimer: http://www.meath.ie/EmailDisclaimer/

Mr Billy Joe Padden,
Executive Planner,
Planning Department,
Meath County Council,
Buvinda House,
Dublin Road,
Navan,
Co. Meath,
C15 Y291

Date: 10th October 2017
Our Ref: JSPE_173_L25

J Sheils Planning & Environmental Ltd

31 Athlumney Castle, Navan, Co Meath

Phone/Fax: Ireland +353 46 9073997 Mobile: John Sheils +353 87 2730087

Email: johnsheils@jspe.ie

RE: Clashford Recovery Facility Ltd – Restoration of quarry at Naul, Co. Meath.

Dear, Mr Padden,

Please find enclosed copy of restoration plan (Figure No. B.2.4, Revision E) for the quarry at Clashford, Naul, Co. Meath including area being restored in accordance with Condition No. 16 of P.A. Reg. Ref.QY36, QC 17.QC2085, which was imposed under Section 261 of the Planning and Development Act 2000, as amended. The area remaining to be restored (c. 4.7 ha) is shown dashed in Cyan. For your information we have also included a copy of Cross Sections (Figure No. B.2.5, Revision C) showing the final land profile for the restored lands.

We would be grateful if you could confirm in writing that the restoration scheme submitted for the quarry lands is to the satisfaction of Meath County Council Planning Department. We would also be grateful if Meath County Council could confirm same with the EPA with respect to the current Waste Licence Application (W0265-01).

Following on from clarification of the planning history of the site we would be grateful if Meath County Council could lift the Section 55 Notice, Environmental Order No. A02789/2017.

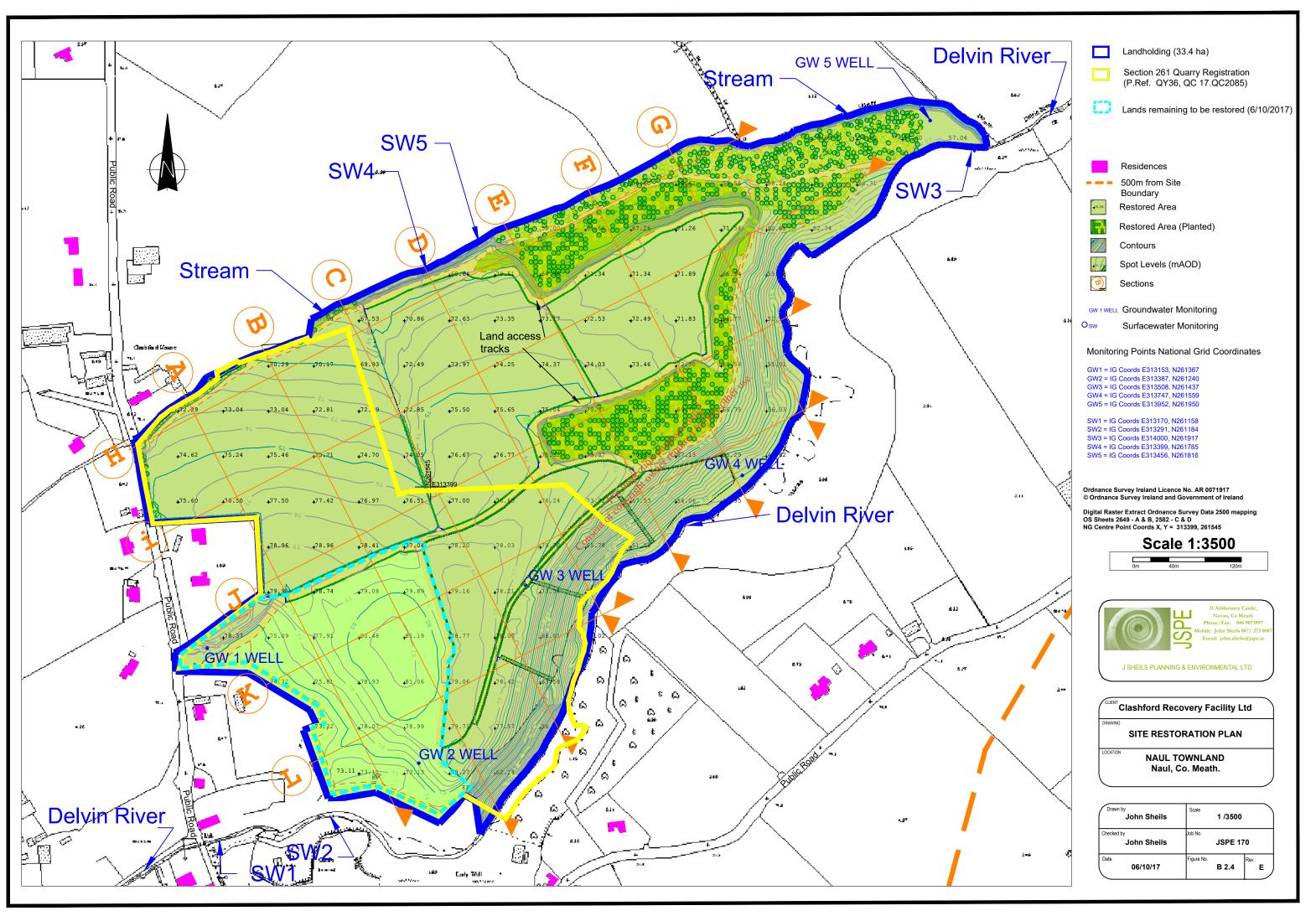
Please do not hesitate to contact us if you require any further information in relation to this matter.

Yours Sincerely,

For J Sheils Planning & Environmental Ltd

John Sheils MSCSI MRICS

Enc. Schedule of Plans, Drawings & Maps


cc. Mr James McCaldin & Larry Whelan, Environment Section

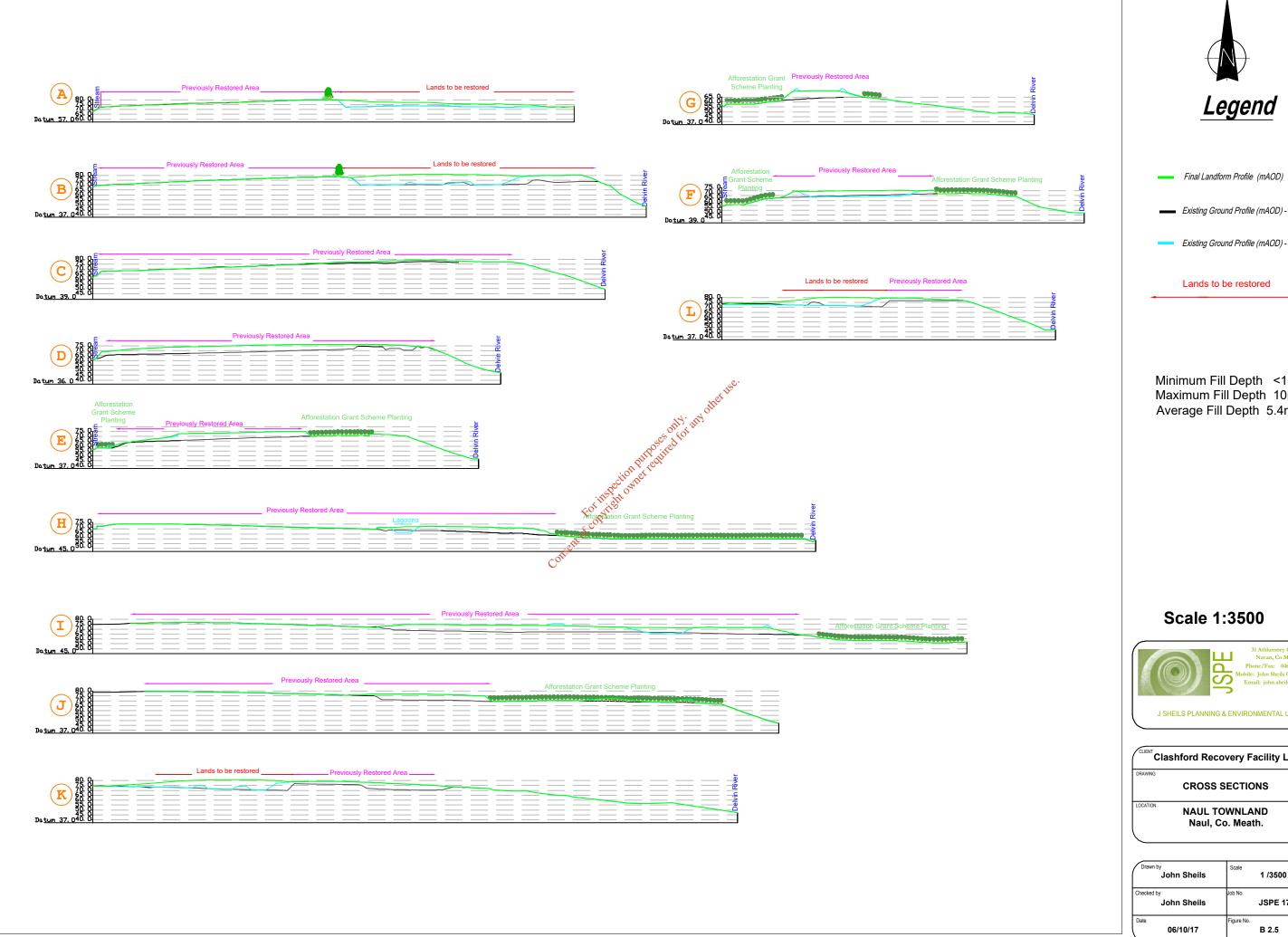

Schedule of Plans, Drawings & Maps

Figure No.	Revision	Title	Scale	Size
B 2.4	E	Site Restoration Plan	3500	А3
B 2.5	С	Cross Sections	3500	АЗ

Consent of copyright owner required for any other

JSPE_173_L25 Page 2 of 2

Existing Ground Profile (mAOD) - 2009

Existing Ground Profile (mAOD) - 2016

Minimum Fill Depth <1m Maximum Fill Depth 10m Average Fill Depth 5.4m

Clashford Recovery Facility Ltd

John Sheils	Scale 1 /3500
Checked by John Sheils	Job No. JSPE 173
Date 06/10/17	Figure No. B 2.5 Rev.

Mr James McCaldin, Environment Section, Meath County Council, Buvinda House, Dublin Road, Navan, Co. Meath,

C15 Y291

Date: 15th November 2017

Our Ref: JSPE_173_L27

J Sheils Planning & Environmental Ltd

31 Athlumney Castle, Navan, Co Meath

Phone/Fax: Ireland +353 46 9073997 Mobile: John Sheils +353 87 2730087

Email: johnsheils@jspe.ie

Re: Environmental Order No. A02789/2017 (Section 55 Notice (WMA Act, 1996, as amended) - Clashford Recovery Facility, Naul, Co. Meath.

Dear Mr McCaldin,

Following on from your email of 9/11/17 please find attached details of the following information as requested. i.e.

- Details of each Waste Management Permit along with gach phase clearly marked on an A3 Drawing.
- Dates of commencement and completion marked on each phase.
- Map showing actual completed infilled areas and permitted boundary

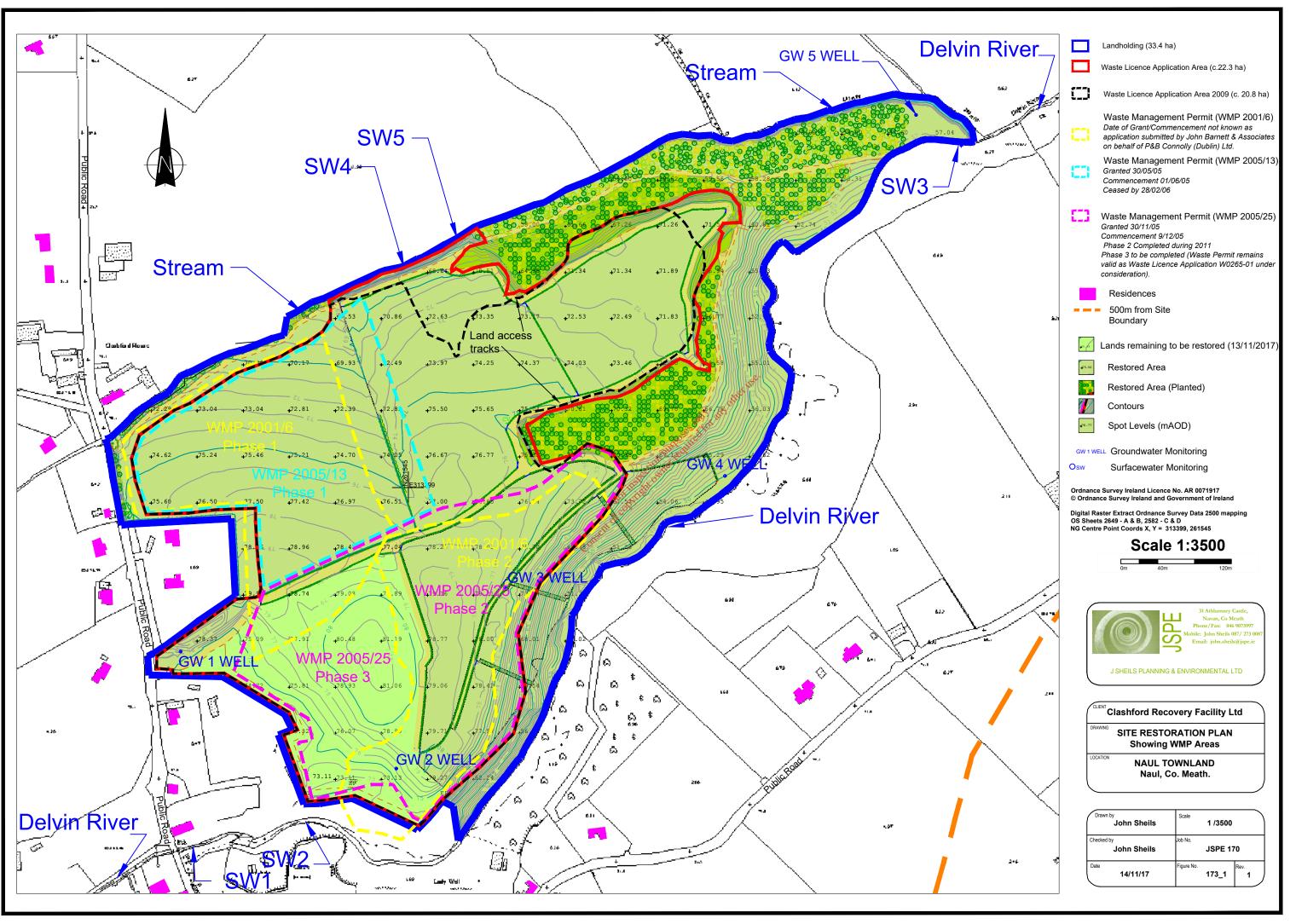
For ease of reference we have marked the verious boundaries and relevant details on a copy of the Site Restoration Plan for the Quarry (Drawing No. 173_1 Attached). Details with respect to date of grant, commencement and completion of Waste Management Permits/Phases are shown (where known) in the legend.

As previously advised Phase 3 of the area relating to Waste Permit (WMP 2005/25) is the only area remaining to be restored by importation of soils and stones. This area is also within the area relating to P.A. Reg. Ref.QY36, QC 17.QC2085. As you are aware the Waste Licence application (Reg. No. W0265_01) is still under consideration by the EPA and as such the Waste Permit (WMP 2005/25) remains valid.

We trust that this addresses the matters raised. Please contact us if you require any further clarification with respect to this matter.

Yours Sincerely,

For J Sheils Planning & Environmental Ltd


John Sheils MSCSI MRICS

cc. James McCaldin, Caroline Corrigan & Larry Whelan, Environment Section

Drawing No. 173_1

Site Restoration Plan showing WMP Areas

22 Lower Main St Dungarvan Co.Waterford Ireland tel: +353 (0)58 44122 fax: +353 (0)58 44244

email: info@hydroenvironmental.ie web: www.hydroenvironmental.ie

Date: 23rd October 2017 Our Ref: P1317-1 0020

Meath County Council County Hall Railway Street Navan County Meath C15 AW81

Dear Sirs,

Re: Seasonal Water Quality Monitoring at Clashford Waste Recovery Facility, The Naul, Co. Meath

1. INTRODUCTION

Hydro-Environmental Services (HES) was requested to complete a round of surface water and groundwater sampling at Clashford Recovery Facility, The Naul, Co. Meath. A site location map is shown below as **Figure A**.

The purpose of this report is to present a description of the sampling methodologies used, and to provide presentation and interpretation of the resulting independent laboratory analytical data.

Figure A: Site Location Map

2. **NEW MONITORING WELL DRILLING**

A new groundwater monitoring well was installed at the site on 04th August 2017. The drilling works were completed by O'Rourke well drilling from Wexford. The drilling was completed using a truck mounted 2011 Drilltech T25KW drilling ria.

Summary details for the installed monitoring well are presented in **Table A**. A geological log for this well is attached as Appendix I.

Table A: Summary monitoring well construction details

Well ID	GW-5
Well location (ING)	E313,952, N261,950
Drilling diameter soils/subsoils	8" (200mm, from 0-11.5mbgl)
Drilling diameter in competent bedrock	6" (155mm, from 11.5-30.48 mbgl)
Total depth of well (mbgl)	30.48
Overburden depth (mbgl)	11.5
Water strikes (mbgl)	13.5
	Increase in water between 20-30mbgl
Well screen/casing diameter	2" (50mm)
Grout seal interval (mbgl)	0 – 13.60
Sand plug (mbgl)	13.6-14.1
Pea gravel (mbgl)	14.1 – 30.48
2" screen interval (mbgl)	15.14 – 30.48
2" plain casing interval (mbgl)	0-15.14
Steel casing interval (mbgl)	0 - 11.69
Water level from top of plastic casing (04/08/17)	<u>all', all</u> 8.80
Water level from top of steel casing (12/09/17)	9.75

3. PREVIOUS WATER QUALITY DATA
Groundwater sampling was completed previously at the site in 2009 and 2014. There are no other historical water quality data wailable for these locations. Grid references for groundwater monitoring well locations are presented in Table B below, and locations are shown on Figure B.

GW-2, GW-3, GW-4 and GW-5 are all location down-gradient of the site, between the fill area and the Delvin River. The direction of groundwater flow at the site is from the northwest towards the southeast in the direction of the Delvin River. The exceedances of IGV values noted from 2014 data for Ammoniacal N, chloride and microbial pathogens are most likely related to land spreading of organic fertilizer at the land which was completed at that time to encourage grass growth following restoration. This issue is discussed in detail in the 2014 EIS.

ID	Easting	Northing	Location
GW-1	313,153	261,367	Up-gradient
GW-2	313,387	261,240	Down-gradient
GW-3	313,508	261,437	Down-gradient
GW-4	313,747	261,559	Down-gradient
GW-5	313,952	261,950	Down-gradient

Table B: Groundwater Monitoring Locations

In addition to these groundwater sampling events, surface water sampling from the local stream was also completed [on 08th March 2014] at locations SW1 (upstream) and SW2 (downstream). These locations are also illustrated on **Figure B.** Recent surface water samples were taken at SW-1 to SW-5 on 12th September 2017.

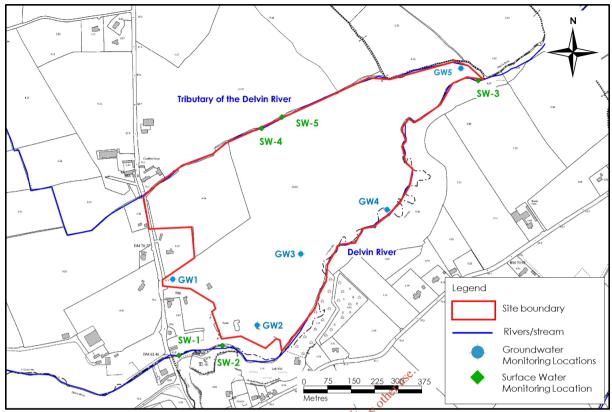


Figure B: Water sampling locations

4. SAMPLING METHODOLOGIES

The sampling methodology that was used on 12th September 2017 for both groundwater wells and surface water is outlined as follows:

- Prior to purging the well for groundwater sampling, the water level in the well was recorded using a dipper groundwater level measurement device.
- To purge the wells, a 1600 tube/piping was installed within the well casing and the top of the tubing was connected to a suction pump. The pump was operated to purge water slowly from the well.
- Purging of the wells was completed until 3 well volumes was abstracted, and until water chemistry, colour and smell had stabilised.
- Visual observations (colour) and olfactory observations (smell) were also recorded during purging/sampling.
- The pumped water was tested for standard field chemistry parameters (pH, EC, temperature, DO) to ensure they were stable before sampling was completed. The sample was taken from the end of the rising main. A calibrated YSI 556 water quality meter was used for field chemistry monitoring.
- Nitrile gloves were used at all times by personnel during the sampling.
- Water sampling was completed using the appropriate laboratory sample bottles.
- All sample bottles were labelled with the sample number, well number, site location, and date and time of sampling.
- The groundwater sample bottles were cleaned and stored in a cooler box for transport to the laboratory.
- Groundwater samples were analysed for the suite of parameters comparable to previous monitoring at the site.
- Following the groundwater sampling at each monitoring well, surface water samples were then taken. The flowing surface water was tested for the same standard field chemistry parameters as that used for the groundwater samples.

- The surface water sample bottles were cleaned and stored in a cooler box for transport to the laboratory.
- Surface water samples were analysed for the suite of parameters comparable to previous monitoring events.
- The completed laboratory Chain of Custody form (for Exova Jones Environmental, Deeside UK) were included in the sample pack that was shipped to the laboratory.
- Samples were kept cool during transport using a cooler box and ice bars.
- The samples were couriered delivered to Exova Jones Environmental by Hydro-Environmental Services on the same day as the sampling was completed.
- Exova Jones Environmental are UKAS accredited.

5. SEPTEMBER 2017 WATER SAMPLING RESULTS

5 no. surface water and 4 no. groundwater samples were taken at the subject site on 12th September 2017 and subsequently analysed against the relevant EQS's. All surface water and groundwater data are tabulated in **Appendix II** and **Appendix III** respectively [at the end of this report].

Original laboratory results for the 2017 groundwater and surface water sampling are contained in **Appendix IV**.

Groundwater results

Total Alkalinity concentrations vary between 230mg/L and 398mg/L across all sampling locations and dates and they are representative of typically conditions at the site.

Ammoniacal Nitrogen exceeded the IGV limit in GW-4 (at 0.24mg/l), however the concentration is significantly reduced compared to the two samples taken in 2014 (0.65-1.4mg/L) indicating an improvement in groundwater quality relative to the 2014 conditions.

Chloride concentrations for GW-3 (60.9mg/l) GW-4 (102.3mg/l) and GW-5 (51.3mg/l) exceed the IGV limit (30mg/l). Animal waste is circle source of chloride and these concentration levels may indicate pollution related to slurry spreading. As discussed in Section 3, a likely source of elevated nitrogen and chloride is land spreading of organic fertilizer to aid in the revegetation process at the site. The highest chloride level detected continues to be in GW-4 but it has decreased from concentrations of 120.4mg/l and 127.9mg/l, measured in 2014, to its current concentration of 102.3mg/l.

All groundwater samples indicate the absence of any microbial pathogens or hydrocarbons in local groundwater which is an improvement on the 2014 environment where both total and faecal coliforms were detected in GW-3 and GW-4.

Manganese concentrations for all four samples exceeded the IGV limit (0.05mg/l), however manganese is a naturally occurring groundwater mineral and dissolves readily in groundwater in low dissolved oxygen conditions. It is consistently high at all locations, and is therefore considered to be naturally occurring in local bedrock.

Surface water results

A lower EC was recorded in the surface water samples, between 491 and 638μ S/cm, compared to $559-938\mu$ S/cm for groundwater, suggesting a higher content of dissolved ionic salts in the groundwater wells compared to the surface water.

The surface water pH level were in the neutral range, between 7.94 and 8.03 for all surface water sample locations.

Of note are the nitrogen based parameters, which are not significantly elevated but do indicate a drop in water quality, particularly at monitoring points SW4 and SW5, relative to

unpolluted watercourses. Typically, tillage, livestock or use of fertilisers are likely sources for a high nitrogen results (both organic and inorganic) and this is feasible given the location of the sampling points and the surrounding land uses.

Runoff for agricultural land can also be responsible for increased phosphate concentrations. Similarly to the surface water nitrogen concentrations recorded, the total phosphate concentration is higher than unpolluted watercourses (0.13-0.06mg/L) but is likely to be a reflection of the agricultural land uses in the catchment.

6. CONCLUSIONS

Our report conclusions are presented as follows:

- ➤ One new groundwater monitoring well (GW-5) was drilled at the Clashford site on 4th August 2017.
- ➤ Overall, both surface water and groundwater sampling results indicate an improvement in water quality at the site from 2014 to 2017, with general decreasing trend in all parameters that were reported as elevated in 2014. However, there are still elevated concentrations of certain parameters detected which are likely to relate to the use of organic fertilizers to assist in the restoration of vegetation cover at the site.
- A round of water sampling was completed on 12th September 2017. Sampling was completed to a specific methodology, and the results from independent laboratory analysis indicate the following:
 - o The majority of groundwater quality parameters are within the IGV limit that demonstrate that local groundwater at the site is of relatively good quality.
 - o The manganese concentration in all groundwater wells exceeded the IGV limit. This is likely to be a natural occurrence due to manganese naturally occurring in the bedrock.
 - o The chloride concentration of three wells exceeded the IGV limit. This may be a result of slurry spreading on at the site to aid vegetation regeneration.
 - o GW-3 contained elevated levels of potassium and GW-4 contained elevated ammoniacal nitrogen which may be attributed to the application of organic fertilizer on the site of the site of the application of organic fertilizer on the site of the application of the site of the application of the site of the application of the application
- A round of surface water sampling was also completed in September 2017. Sampling was completed to a specific methodology, and the results from independent laboratory analysis indicate the following:
 - Local surface water was generally of good quality, but did contain elevated nitrogen concentrations, and this is attributed to local agricultural land use. In addition, the nitrogen concentrations as measured in 2017 were significantly lower than that of the discharge point nitrogen concentration in 2014.

7. CLOSURE

I trust the above meets your current requirements. Please contact the undersigned if any further information is required.

Yours sincerely,

Muhall Grll

Michael Gill

B.A., B.A.I., M.Sc., Dip Geol, MIEI, MCIWEM

APPENDIX I GEOLOGICAL LOG FOR MONITORING WELL GW-5

Consent of copyright owner required for any other use.

HYDRO-ENVIRONMENTAL SERVICES

WATER WELL DRILLING LOG

WELL NUMBER: GW -5

EASTING: 313952

NORTHING: 261950

PROJECT NUMBER: P1317-1

 $\textbf{SITE:} \ Clash ford, \ The \ Naul, \ Co \ Meath$

CLIENT: Clashford Recovery Facility Ltd

DRILLING CONTRACTOR: O Rourke Well Drilling

DATE STARTED: 04/08/2017

DATE FINISHED: 04/08/2017

LOGGED BY: M.Gill

FLUSH: Air

ELEVATION:

Airlift Q (gal/hr) Meters Water Strikes Flush Colour **Well Completion Below** H2O Inject. Fractures Comments **Formation Description** Lithology Description Elevation Ground Surface 0.00 Ground Surface 0 MADE GROUND of grey brown, 8" drilling to 0-11.5mbgl, 6" sandy gravel drilling from 11.5 to30.0mbgl CLAY Brown flush in weathered rock 5 piezo casing Weathered siltstone bedrockwith brown water flush water strike at 13 smooth of the control of the con cement grou 13.6 14.1 15 -18.30 Arilfting 500-600gph, cleaning as airlifting occuring Dark grey SILTSTONE with red and brown staining 20 pea gravel piezo screen -21.30 Softer rock between 21 and Dark grey SILTSTONE with red 24.4 and brown staining -22.90 Dark grey SILTSTONE Airlifting 800gph increase in water between 25 20-30mbgl 30 -30.48 base 30.48 Total Depth of Borehole 35 REMARKS: Geosock installed over full length of well screen PAGE 1 of 1 water level after install - 8.80mbTOC uPVC pipe SCALE As shown HYDRO-ENVIRONMENTAL SERVICES 22 Lower Main Street Dungarvan Co. Waterford Tel: 058-44122 Fax: 058-44244 Email: info@hydroenvironmental.ie

APPENDIX II SURFACE WATER SAMPLE RESULT TABLES

Consent of copyright owner required for any other use.

Appendix II
Clashford Recovery Facility, The Naul, Co. Meath
Summary of 2009 and 2017 Surface Water Chemistry Data

Sample Date											walel Goldeline	cio
	Upstream	Discharge	Downstream	SW1	SW2	SW3	SW4	SW5	EQS - Surface Water mg/l	2009 SW Regs AA (mg/l)	2009 SW Regs MAC (mg/l)	Salmonid water regulations SI 293/1988
	13/01/2009	13/01/2009	13/01/2009	12/09/2017	12/09/2017	12/09/2017	12/09/2017	12/09/2017				
Parameters	9					6	i	· ·				
Ammoniaca Nitosop at N (max)	022	9 6	077.	332	324	330	736	292	. 0	, 3	, 6	
America (mg/l)	\$0.08 0.00	0.31	\$0.00	40.0 2000 c	0.10	0.00	0.00	0.03	10.0	40.00	0.03	_
Alsenic (mg/l)	0.001	0.0051	0.0015	<0.0025	<0.0025	<0.0025	<0.0025	0.0026	0.023	0.025		,
Barium (mg/l)	0.034	0.037	0.034	0.031	0.031	0.019	0.028	0.029				
Boron (mg/l)	0.05	90:0	0.05	0.046	0.039	0.039	0.021	0.024		,	•	
Cadmium(mg/I)	0.00027	0.00028	<0.0001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.00008	0.00008	0.0002	
Calcium (mg/I)	94	109	96	118.2	116.5	118.1	86.5	87.6			•	1
Chloride (mg/l)	31	64	34	27.1	27.9	27.8	28.5	28.4	,			0.005
Chromium (mg/l)	<0.001	0.019	0,00	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	0.034	0.034	,	
Conductivity (µS/cm @ 20'C)	206	692	529	638	610	627	491	505	1			,
Copper (mg/l)	<0.05	<0.05	<0.05	O2000>	<0.00	<0.000	200.0>	<0.00	0.03	0.03		1
Cyanide (ma/l)	<0.0	<0.01	<0.01	500	<0.01	<0.01	\$0.0 10.0	<0.01	0.01	0.01	,	1
Dissolved Oxvaen	11.5	11.3	11.7	0	2	100	2 0		,			50% or >9(mg/L)
Fluoride	0 0	0.25	5	<0>	0200 B	\$0°3	\$ C	<0.0	0.5	5 0		
Iron#	.;; c	0.37	0.23	0.052	2000	0.07	0.039	0.04		? '		,
Lead(ma/l)	<0.00	0.004	\$100 O	<0.005	0000 00000 00000	<0.005	<0.005	<0.00	0.0072	0.0072		,
Magnesium (mg/l)	φ. α	10.0	α α	9 %	N. C.	10.2) 0	0000		1		,
Managenese#	900	<u> </u>	900	0040	0000	2000	0.053	0.054	,			
Mercury (mg/l)	<0.000	<0.0000	0.00 0 000 0 000	000	5000		5000	0.00	0.00005	0.00005	0.00007	
#@XCZ	01.0>	01 0>	01.0>	\$0.00 \$0.00	<0.00	47 COOO	<0.00	<0.00	0.02	0 00	,	,
Nitrate as NO3 (ma/l)	25	2 0	23	5.4	4.8	iei iei	14.5	144	<u>-</u>	-	,	
Nitrite as NO2 (mg/l)	\$2	<0.0>	\$0.5 \$0.7	- CO O>	90'0	200	\$0.0>	<0.02	0.05	,	,	0.05
, (i) HQ	7.9	7.8	7.9	7.96	∞		8.03	8	6-9		,	6-9
Phosphate (low Level), ortho	0.08	0.11	0.1	0.21	0.33	0.32	0.13	0.13			,	; '
Phosphorus (mg/l)	0.09	0.27	0.07	0.091	0.131	0.126	0.063	0.057	0.025	0.045	0.025	,
Potassium (mg/l)	2	7	8	4	4.5	4.4	3.2	3.2			,	,
Residue on Evaporation @ 180'C	340	508	318	406	405	412	326	317			,	1
Selenium (mg/l)	0.0015	0.002	0.0016	<0.003	<0.003	<0.003	\$0,003	<0.003		,	,	1
Silver	<0.01	0.02	0.01	<0.005	<0.005	<0.005	<0000	<0.005			•	
Sodium	14	44	17	12.2	13.8	14	14.7	14.9				,
Sulphate	27	151	41	36	37.6	35.1	26.4 %	27.9			•	1
Temperature			,		,	,	,•	,				,
10C	3.6	9.9	4	က	4	4	4	က			•	
1ON	5.8	0.51	5.2	1.2	Ξ	==	3.3	3.3				1
Total Phenols by colourimetry	<0.05	<0.05	<0.05	<0.01	<0.01	<0.01	<0.01	<0.01	0.008	0.008	0.046	
Zinc#	0.18	0.03	0.01	<0.003	<0.003	<0.003	<0.003	<0.003	0.1	0.1	,	
Faecal Coliforms (cfu/100ml)	>100	82	×100						,	,	,	
Total Coliforms (ctu/100ml)	001×	×100	8 - 8			1		,	1		,	

'-' means no data available **bold** - above EQS or water quality guidelines

P1317-1_APPENDIX II

APPENDIX III GROUNDWATER SAMPLE RESULT TABLES

Consent of copyright owner required for any other use.

Appendix III Clashford Recovery Facility, The Naul, Co. Meath Summary of 2014 and 2017 Groundwater Chemistry Data

Sample Date	GW2	GW3	GW4	GW3	GW4	GW2	GW3	GW4	GW5	GW Interim Guideline Value mg/l (Groundwater Assessment Criteria)
Date	05/08/2014	11/08/2014	05/08/2014	10/09/2014	10/09/2014	12/09/2017	12/09/2017	12/09/2017	12/09/2017	
Parameters										
Total Alkalinity as CaCO3 (mg/I)	278	270	230	280	398	286	292	372	310	no abnormal change
Ammoniacal Nitrogen as NH4 (mg/l)	0.08	<0.03	1.4	<0.03	99.0	90:0	<0.03	0.24	0.08	0.15
Dissolved Calcium (mg/l)	7.06	119.1	109.3		169.1	78.1	130.4	147.2	101	200
Chloride (mg/l)	25	110.1	120.4	48.6	127.9	27.4	60.9	102.3	51.3	30
Conductivity(uS/cm @ 20'C)	629	938	1140		1245	559	877	938		1000
Dissolved Iron (mg/I)	0.028	<0.020	0.15%		1.981	0.188	<0.02	4.157	<0.02	0.2
Lead(mg/I)	ı	1	eni	1	ı	<0.005	<0.005	<0.005	<0.005	0.01
Magnesium (mg/I)	22.9	30.7	19.5	S)	22	19.2	30.1	17.7	17.4	50
Manganese (mg/l)	0.455	0.104	0.937	000	2.683	0.395	0.064	2.219	0.052	0.05
Nitrate (mg/I)	0.7	0.2	0.4	ESP.	<0.2	<0.2	<0.2	2	0.5	25
Nitrite (mg/l)	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.04	0.15	0.1
Hd	7.72	7.62	10.64	7.7	7.46	-	-	-	-	>=6.5 and <=9.5
Ortho Phosphate as PO4 (mg/1)	90.0>	>0.06	>0.06	90.0>	90.00	<0.03	<0.03	<0.03	90.0	0.03
Total Phosphorus (µg/I)	34	460	54	315	200	-	1	1	1	
Dissolved Potassium (mg/I)	1.9	6.6	75.2	7.5	TION OF THE PERSON OF THE PERS	1.5	8.3	3.1	3.7	5
Dissolved Sodium (mg/I)	20.2	26.6	94.8	21.3	8 86 84	18.7	23.6	35	28	150
Sulphate (mg/I)	73.97	90.82	138.27	84.88	70.39	48.6	177.4	36	44.7	200
Turbidity NTU	0.3	0.5	0.5	6.0	\$ _:	1.4	1.9	3.9	0.8	
ЕРН (С8 - С40) (µg/I)	<10	<10	<10	<10	<10	01>	<10	<10	<10	
C8 - C40 Mineral Oil (µg/l)	<10	<10	<10	<10	<10	012	<10	<10	<10	
						p.				
Faecal Coliforms (cfu/100ml)	0	>100	20	10	30	0	0	0	0	0 counts per 100ml
Iotal Colitorms (ctu/I00ml)	3	>100	900	40	97	0	0	0	0	0 counts per 100ml

bold - exceeds IGV

P1317-1_APPENDIX III

APPENDIX IV ORGINAL LABORATORY RESULT FOR 2017 SAMPLES

Consent of copyright owner required for any other use.

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA

Hydro-Environmental Services 22 Lower Main Street Dungarvan Co Waterford

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Michael Gill Attention:

Date: 28th September, 2017

Your reference: P1317-1

Our reference:

Location:

14th September, 2017 and that use. Date samples received :

Status:

Final report

Issue:

1

Nine samples were received for analysis on 14th September, 2017 of which nine were scheduled for analysis. Please find attached our Test Report

which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Phil Sommerton BSc Project Manager

Client Name: Hydro-Environmental Services

Reference: P1317-1
Location: Clashford
Contact: Michael Gill
JE Job No.: 17/15401

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE Job No.:	17/15401						$H=H_2SO_4$, 2	Z=ZnAc, N=	NaOH, HN=	HN0 ₃	_		
J E Sample No.	1-6	7-12	13-18	19-24	25-30	31-35	36-40	41-45	46-50]		
Sample ID	P1317-1-SW1	P1317-1-SW2	P1317-1-SW3	P1317-1-SW4	P1317-1-SW5	P1317-1-GW2	P1317-1-GW3	P1317-1-GW4	P1317-1-GW5				
Depth											Please se	e attached n	otes for all
COC No / misc												ations and a	
Containers	V H HN N P G	V H HN N P G	V H HN N P G	V H HN N P G	V H HN N P G	V H HN P G	V H HN P G	V H HN P G	V H HN P G				
Sample Date	12/09/2017	12/09/2017	12/09/2017	12/09/2017	12/09/2017	12/09/2017	12/09/2017	12/09/2017	12/09/2017				
Sample Type													
Batch Number	1	1	1	1	1	1	1	1	1		LOD/LOR	Units	Method No.
Date of Receipt			14/09/2017			14/09/2017			14/09/2017				
Dissolved Arsenic#	<2.5	<2.5	<2.5	<2.5	2.6	<2.5	<2.5	5.3	<2.5		<2.5	ug/l	TM30/PM14
Dissolved Barium #	31	31	19	28	29	46	47	108	81		<3	ug/l	TM30/PM14
Dissolved Boron	46	39	39	21	24	32	57	26	33		<12	ug/l	TM30/PM14
Dissolved Cadmium # Dissolved Calcium #	<0.5 118.2	<0.5 116.5	<0.5 118.1	<0.5 86.5	<0.5 87.6	<0.5 78.1	<0.5 130.4	<0.5 147.2	<0.5 101.0		<0.5 <0.2	ug/l	TM30/PM14 TM30/PM14
Total Dissolved Chromium #	<1.5	<1.5	<1.5	86.5 <1.5	87.6 <1.5	78.1 <1.5	130.4 <1.5	<1.5	101.0 <1.5		<0.2 <1.5	mg/l ug/l	TM30/PM14
Dissolved Copper #	<7	<7	<7	<7	<7	<7	<7	<7	<7		<7	ug/l	TM30/PM14
Total Dissolved Iron #	52	27	27	39	40	188	<20	4157.	<20		<20	ug/l	TM30/PM14
Dissolved Lead #	<5	<5	<5	<5	<5	<5	<5	, V 5	<5		<5	ug/l	TM30/PM14
Dissolved Magnesium#	9.6	9.9	10.2	8.9				17.7	17.4		<0.1	mg/l	TM30/PM14
Dissolved Manganese #	49	39	24	53	54	395	7114 6414 C	2219	52		<2	ug/l	TM30/PM14
Dissolved Mercury#	<1	<1	<1	<1	8.9 54 <1 <2 57 3.2 (10) 1.11 (10) 1.	35	of tot a	-	-		<1	ug/l	TM30/PM14
Dissolved Nickel #	<2	<2	<2	<2	<2	580°-150°	<2	<2	<2		<2	ug/l	TM30/PM14
Dissolved Phosphorus #	91	131	126	63	57	Dilledin	-	-	-		<5	ug/l	TM30/PM14
Dissolved Potassium#	4.0	4.5	4.4	3.2	3.2	21.5	8.3	3.1	3.7		<0.1	mg/l	TM30/PM14
Dissolved Selenium #	<3	<3	<3	<3	- 180° O	MI	-	-	-		<3	ug/l	TM30/PM14
Dissolved Silver	<5	<5	<5	<5	THE SAL	<5	<5	<5	<5		<5	ug/l	TM30/PM14
Dissolved Sodium#	12.2	13.8	14.0	14.7	ORY4.9	18.7	23.6	35.0	28.0		<0.1	mg/l	TM30/PM14
Dissolved Zinc #	<3	<3	<3	<3 ¢	<3	<3	<3	<3	17		<3	ug/l	TM30/PM14
Total Phosphorus	-	-	-	Consentor	-	35	41	52	62		<5	ug/l	TM30/PM14
EPH (C8-C40)#	-	-	-	O .	-	<10	<10	<10	<10		<10	ug/l	TM5/PM30
C8-C40 Mineral Oil (Calculation)	-	-	-	-	-	<10	<10	<10	<10		<10	ug/l	TM5/PM30
Phenol #	<0.01	<0.01	<0.01	<0.01	<0.01	-	-	-	-		<0.01	mg/l	TM26/PM0
Electric Control of the Control of t												*	TM470/0145
Fluoride	<0.3	<0.3	<0.3	<0.3	<0.3	-	-	-	-		<0.3	mg/l	TM173/PM0
Sulphate as SO4 #	36.0	37.6	35.1	26.4	27.9	48.6	177.4	36.0	44.7		<0.5	mg/l	TM38/PM0
Chloride #	27.1	27.9	27.8	28.5	28.4	27.4	60.9	102.3	51.3		<0.3	mg/l	TM38/PM0
Nitrate as NO3 #	5.4	4.8	4.7	14.5	14.4	<0.2	<0.2	2.0	0.5		<0.2	mg/l	TM38/PM0
Nitrite as NO2 #	<0.02	0.06	0.06	<0.02	<0.02	<0.02	<0.02	0.04	0.15		<0.02	mg/l	TM38/PM0
Ortho Phosphate as PO4	0.21	0.33	0.32	0.13	0.13	<0.03	<0.03	<0.03	0.06		<0.03	mg/l	TM38/PM0
Total Oxidised Nitrogen as N #	1.2	1.1	1.1	3.3	3.3	<0.2	<0.2	0.5	<0.2		<0.2	mg/l	TM38/PM0
Total Cyanide #	<0.01	<0.01	<0.01	<0.01	<0.01	-	-	-	-		<0.01	mg/l	TM89/PM0
Ammoniacal Nitrogen as N #	0.04	0.16	0.05	0.05	0.05	-	-	-	-		<0.03	mg/l	TM38/PM0
Ammoniacal Nitrogen as NH4#	-	-	-	-	-	0.06	<0.03	0.24	0.08		<0.03	mg/l	TM38/PM0
Total Alkalinity as CaCO3 #	332	324	330	256	268	286	292	372	310		<1	mg/l	TM75/PM0
Dissolved Oxygen	9	10	10	10	10	-	-	-	-		<1	mg/l	TM59/PM0
Electrical Conductivity @25C#	638	610	627	491	505	559	877	938	<2		<2	uS/cm	TM76/PM0

Client Name: Hydro-Environmental Services

Reference: P1317-1
Location: Clashford
Contact: Michael Gill
JE Job No.: 17/15401

Report : Liquid

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

JE Job No.:	17/15401						$H=H_2SO_4$, 2	Z=ZnAc, N=	NaOH, HN=	:HN0₃			
J E Sample No.	1-6	7-12	13-18	19-24	25-30	31-35	36-40	41-45	46-50				
Sample ID	P1317-1-SW1	P1317-1-SW2	P1317-1-SW3	P1317-1-SW4	P1317-1-SW5	P1317-1-GW2	P1317-1-GW3	P1317-1-GW4	P1317-1-GW5				
Depth													
COC No / misc												e attached no ations and ac	
Containers	V H HN N P G	V H HN P G	V H HN P G	V H HN P G	V H HN P G								
Sample Date													
Sample Type													
Batch Number		1	1	1	1	1	1	1	1				
											LOD/LOR	Units	Method No.
Date of Receipt	7.96	8.00	7.94	8.03	8.00	-	14/09/2017		14/09/2017		<0.01	nH unito	TM73/PM0
								-	-			pH units	
Total Organic Carbon #	3	4	4	4	3	<2 -	2	3	<2		<2	mg/l	TM60/PM0
Total Solids #	406	405	412	326	317				- 0.0		<5	mg/l	TM20/PM0 TM34/PM0
Turbidity	- 7.00	- 7.24	- 7.45	-	-	1.4	1.9	3.9	0.8		<0.1	NTU	
Total Cations	7.32	7.34	7.45	5.77	-	6.33	10.22	10.40	7.79		<0.00	mmolc/l	TM30/PM14
Total Anions	8.24	8.13	8.19	6.71	-	7.50	11.25	11.11	8.58		<0.00	mmolc/l	TM0/PM0
% Cation Excess	-5.91	-5.11	-4.73	-7.53	inspection	-8.46	-4.80	-3.30	-4.83			%	TM0/PM0
								ner use					
							77. JUS G	C.					
						روي (a for a						
						OUTPOSTIT							
					dio	veries,							
					TESON OF	H							
				Ý.	of Wildlife								
				, &	ios,								
				sento									
			(Colli									

Notification of Deviating Samples

Matrix: Liquid

Exova Jones Environmental

Client Name: Hydro-Environmental Services

Reference: P1317-1

Location: Clashford

Contact: Michael Gill

Reason	Liquid Samples were received at a temperature above 9°C.																	
Analysis			Cot	h Sent	\$of co	ंगड [्] रे	edito di	h Puller	do se se de la company de la c	only	r and	other	Hes.					
J E Sample No.																		
Depth																		
Sample ID																		
Batch	1																	
J B Sob	17/15401																	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

Please include all sections of this report if it is reproduced

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 17/15401

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory, office USC ISO17025 accreditation applies to surface use ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the aboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40. of copyris

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

	ISO47035 (LIKAS) appredited. LIK
#	ISO17025 (UKAS) accredited - UK.
SA	ISO17025 (SANAS) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	AQC Sample Blank Sample Client Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range
	Trip Blank Sample Outside Calibration Range Consent of Copyright

JE Job No: 17/15401

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
ТМО	Not available	PMO	No preparation is required.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	Consess of Co	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PMO	The paparation is required.	Yes			
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PMO	No preparation is required.	Yes			
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and ledchates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified frequired.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	ીં Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM34	Turbidity by 2100P Turbidity Meter	PMO	No preparation is required.				
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PMO	No preparation is required.				
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PMO	No preparation is required.	Yes			

JE Job No: 17/15401

Fest Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM59	Determination of Dissolved Oxygen using the Hach HQ30D Oxygen Meter	PMO	No preparation is required.				
TM60	Modified USEPA 9060. Determination of TOC by calculation from Total Carbon and Inorganic Carbon using a TOC analyser, the carbon in the sample is converted to CO2 and then passed through a non-dispersive infrared gas analyser (NDIR).	PM0	No preparation is required.	Yes			
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	onsen of co	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PMO	Physician is required.	Yes			
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PMO	No preparation is squired.	Yes			
TM89	Modified USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PMO	No preparation is required. On	Yes			
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PMO	ာင် No preparation is required.				
							1

ALS Life Sciences Ltd Trading as ALS Carrigeen Business Park, Clonmel, Co. Tipperary

Tel: +353 (0) 52 617 8100 Fax:+353 (0) 52 617 8103

www.alsglobal.ie

HYDR-474120917 Report No:

Document No: EF0011

CERTIFICATE OF ANALYSIS

Hydro Environmental Services Client

22 Lower Main Street

Dungarvan

Co. Waterford

Hydro Environmental Services For the Attention of:

Sample Reception 4 sample(s) received in good condition.

N/A Comments

Note:

Date Received

12/09/2017

Date Reported

13/09/2017

Order Number

N/A

Rection further required for any other use. A # next to the result indicates that there was insufficient sample to carry out testing as per SOP.

Report Authorised by:

Olwen Maher

Deputy Microbiology Manager

Conditions:

- 1. Results in this report relate only to the items tested
- 2. Reports may not be reproduced except in full without the approval of ALS Life Sciences Ltd
- 3. All queries regarding this report should be addressed to the Technical Manager at the above address
- 4. A * next to a method reference signifies that ALS Life Sciences Ltd is NOT INAB accredited for this method
- 5. Results reported as CFU/cm² are calculated based on information supplied by customer regarding area swabbed 6. CFU indicates Colony Forming Units, MPN indicates Most Probable Number
- 7. SUBCON* indicates analysis subcontracted to approved subcontractors who do not hold accreditation for this test
- 8. SUBCON[^] indicates analysis subcontracted to approved subcontractors who hold accreditation for this test

Page 1 of 2

ALS Life Sciences Ltd Trading as ALS Carrigeen Business Park, Clonmel, Co. Tipperary

Tel: +353 (0) 52 617 8100 Fax:+353 (0) 52 617 8103

www.alsglobal.ie

HYDR-474120917 Report No:

Document No: EF0011

CERTIFICATE OF ANALYSIS

12/09/2017 **Date Received** 13/09/2017 **Date Reported Order Number** N/A

Water Sample Type

P1317-1 - GW2 Date sampled: 12.09.2017 @ 11.00am **Client ID**

12/09/2017 **Date Tested** 2819365 ALS ID

Result <u>Unit</u> Method **Test** SP 196 Based on ISO 9308-2 (2012) Coliforms 0 MPN/100ml

SP 200 based on the IDEXX Colilert 18 test kit. Faecal coliforms 0 MPN/100ml

Sample Type

P1317-1 - GW3 Date sampled: 12.09.2017 @ 11.00 and 12/09/2017 Client ID **Date Tested**

ALS ID 2819366

Result Method Test Unit SP 196 Based on ISO 9308-2 (2012) Coliforms 0 MPN/100ml

0 MPN/100ml SP 200 based on the IDEXX Colilert 18 test kit. Faecal coliforms

Water Sample Type P1317-1 - GW4 Date sampled 2.09.2017 @ 11.00am

12/09/2017 **Date Tested ALS ID** 2819367

Result <u>Unit</u> Method <u>Test</u>

Coliforms 0 MPN/100ml SP 196 Based on ISO 9308-2 (2012) Faecal coliforms 0 MPN/100ml SP 200 based on the IDEXX Colilert 18 test kit.

Water Sample Type

Client ID

P1317-1 - GW5 Date sampled: 12.09.2017 @ 11.00am **Client ID**

12/09/2017 **Date Tested** ALS ID 2819368

Test Result Unit Method MPN/100ml SP 196 Based on ISO 9308-2 (2012) Coliforms 0

Faecal coliforms 0 MPN/100ml SP 200 based on the IDEXX Colilert 18 test kit.

Report Authorised by:

Olwen Maher

Deputy Microbiology Manager

© HYDRO-ENVIRONMENTAL SERVICES

22 Lower Main Street, Dungarvan, Co. Waterford, X35 HK11 T: +353-(0)58-441 22 F: +353-(0)58-442 44 E: info@hydroenvironmental.ie

www.hydroenvironmental.ie

Mr. Larry Whelan, **Environment Section,** Meath County Council, Buvinda House, Dublin Road, Navan, Co. Meath,

C15 Y291

Date: 25th August 2017 Our Ref: JSPE 173_L23

Your Ref: A02789/2017/ WM20/2017

J Sheils Planning & Environmental Ltd

31 Athlumney Castle, Navan, Co Meath

Phone/Fax: Ireland +353 46 9073997 Mobile: John Sheils +353 87 2730087 johnsheils@jspe.ie

Environmental Order No. A02789/2017 (Section 55 Notice (WMA Act, 1996, as amended) -Re: Clashford Recovery Facility, Naul, Co. Meath.

Email:

Dear Mr. Whelan,

Following on from our previous response of 18th August 2017, we wish to provide the following up date with respect to progress on site.

We wish to confirm that our client has now competed the installation of steps and handrails to form access to the monitoring point at the attenuation pond as agreed on site by EPA/ Meath County Council staff with the Permit Holder.

Details with respect to the steps and additional borehole installation are shown by the attached photographs.

As per our previous corespondence we would be grateful if you could expedite the necessary arrangements regarding a meeting with your colleagues in Planning and Environment and contact us next week with respect to same.

Yours Sincerely,

For J Sheils Planning & Environmental Ltd,

John Sheils MSCSI MRICS

cc. Mr Larry Whelan, SEO, Environment cc. Mr Billy Joe Padden, Exec. Planner

Photograph 1: Installation of steps and handrails to form access to the monitoring point

Photograph 2: Groundwater Monitoring Well Installation, The Naul, Clashford, Co. Meath.

JSPE 173_L23 2